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Motivation

@ Multivariate datasets
e agriculture, engineering, genetics, social science. ..
@ Complex data structure
o datasets with many discrete, skewed or correlated features

@ image, voice, surveys. ..
@ need advanced methods for analysis and summaries

@ Display distinct groups while also inherent variability
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Example: Gamma Ray Bursts (GRBs)

@ Extremely energetic explosions observed in distant galaxies.

o data from NASA’s Burst and Transient Source Experiment
e 1,599 GRBs with complete information on 9 parameters

@ time for % flux to arrive, peak fluxes in different channels,
time-integrated fluences over time-points

@ Nine heavily-skewed “parameters” or attributes
o use of logarithms to reduce skewness
@ astrophysics community argued long over 2 or 3 types

e analysis based on summary exclusion of some heavily-correlated
attributes
e recent analysis shows all 9 features important for clustering

@ actually 5 ellipsoidal groups, not 2 or 3
@ smaller-dimensional 9D example used as a test case
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@ Visualization tools for continuous multivariate data
@ pairwise scatter plots
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Pairwise Scatterplots: Gamma Ray Bursts
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Background and Current Work

@ Visualization tools for continuous multivariate data

@ pairwise scatter plots
@ limited in providing multivariate assessments

e parallel coordinates plot (/nselberg ‘85, Wegman ’90)
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Parallel Coordinate Plots: Gamma Ray Bursts
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@ Represent multidimensional data using lines.

e vertical line represents each dimension or attribute.

e p— 1lines connected at appropriate scaled dimensional value represent
each observation

@ polar version provided by star plot
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Background and Current Work

@ Many approaches to display continuous multivariate data

@ pairwise scatter plots
@ limited in providing multivariate assessments
e parallel coordinates plot (/nselberg ‘85, Wegman '90)

@ placement order matters, unclear for large n, p
@ hard to identify groups/patterns with even moderate n.

o Andrews’ curves represent each observation via trigonometric series
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Andrews’ Curves: Gamma Ray Bursts

@ Plot each X = (X4, X2,..., Xp) as a curve:

f(t) = X1 + Xosint + xzcost + Xgsin2t + X5 cos 2t + ... ., te [-m, 7]

@ Entire curve displays one observation
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Background and Current Work

@ Many approaches to display continuous multivariate data

@ pairwise scatter plots
@ limited in providing multivariate assessments
e parallel coordinates plot (/nselberg ‘85, Wegman '90)

@ placement order matters, unclear for large n, p
@ polar version provided by star plot

@ Andrews’ curves

@ order in which coordinate enters series important
@ very computationally intensive for larger p

e Star coordinates plot
represents coordinate axes as equi-angled rays extending from center

@ order matters, optimized (van Long & Linsen '11)

@ Use springs to display observation (radial visualization)
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Two-dimensional radial visualization (RadViz2D)

@ Uses Hooke’s law to project data onto unit circle

@ place p springs (anchor points) on the rim

@ pull each spring by value relative to coordinate from center
@ observations w/ similar relative values in all attributes end up closer to
center, others are closer to the anchor points

e order of placement of springs affects display

@ refinements to improve RadViz2D exist (see later)
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RadViz2D lllustration

X2

X3

mation by animate[2019/0t/.

Xa
Xs
X = (X1, X2, X3, X4, X5) = (0.7,0.5,0.3,0.2,0.7)

@ Maps X € RP to 2D point W*(X; U) = UX/1,X:
U projection matrix, columns (anchor points) on S'

Dai, Zhu & Maitra RadViz3D for High-dimensional Data 12/34



Two-dimensional radial visualization (RadViz2D)

@ Uses Hooke’s law to project data onto unit circle

e place p springs (anchor points) on the rim

@ pull each spring by value relative to coordinate from center
@ observations w/ similar relative values in all attributes end up closer to
center, others are closer to the anchor points

o order of placement of springs affects display
@ refinements to improve RadViz2D exist (see later)

@ Effective for sparse data, in evaluating distinct groups

e Nonlinear map distorts, affects interpretability

e High-dimensional observations more difficult to visualize
@ Can fully 3D extension improve performance?

@ Viz3D provides third dimension, constant for all observations (Artero &
de Oliveira, '04)
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Generalizing Radial Visualization

@ Allow anchor points in U on S9, g > 1, not necessarily equi-spaced

p springs at uy, Us, ..., Up € S9, with spring constants Xi, X, ..., Xp.

equilibrium point Y € R9*" of system satisfies

p

D X(Y —u) =0,

j=1

® Y =W(X;U)=UX/1,X solves the system.

is line-, point-ordering- and convexity-invariant.

scaling every coordinate to be in [0,1] allows for Y € S9.
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Placement of Anchor Points

@ Suppose: coordinates of X are uncorrelated.
@ For X1, Xo e RP, let Y; = W(X;; U),i=1,2.

e Euclidean distance between Y and Y, is

!
X1 X2 X1 X2
Yi- Y2 = - vu -
1Y+ = Yz (1;,x1 1’x2> (1;,x1 17X, )’

p p

@ X, X; very dissimilar, with perfect negative correlation, should be placed
as far away as possible (in opposite directions) in our radial visualization.

e However, ||Y; - Y;||> — 0 as (uj, u;) — 0.

@ may create artificial visual correlation between ith and jth coordinates if
<U,‘7 Uj) —-0< 71'/2.

@ need u;s far from the other as possible; so evenly distributed.

e S%: for larger g, can get larger angles between u;s

e Also place positively correlated coordinates close together
@ g > 1 has advantage in placing multiple coordinates together
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Three-dimensional Radial Visualization

@ g = 2 in our generalization yields RadViz3D:

e equi-spaced anchor points for 5 Platonic solids, p = 4,6, 8,12, 20.

@ closely related to Thomson problem in traditional molecular quantum
chemistry (Atiyah & Sutcliffe '03).

o for other p, approximate through Fibonacci grid, jth anchor point:

up = cos(27rj<p_1) 1-— uj23,

Up = sin(2mjo )4 /1 — Uz,

where ¢ = (1 + v/5)/2 is the golden
ratio. (Gonzalez '10)

o distributes anchor points along generative spiral on S, with consecutive
points as separated as possible, satisfies "well-separation" property (Saff &
Kuijlaars ’97).
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4D Examples simulated via MixSim package in R
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Higher-dimensional Datasets

@ Display p anchor points infeasible, even for moderate p

e placement of equally-spaced anchor points built on not inducing
spurious positive correlations in display

@ with increasing p, harder to guarantee such outcome

@ Project high-dimensional data to uncorrelated coordinates but
preserve distinctiveness and variability in groups

o Principal Components finds mutually orthogonal projections

summarizing proportion of total variance, but does not account for
groups.
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Maximum-Ratio Projection (MRP)

@ Step 1: Obtain PCs (orthogonal V) for each group

e Find orthogonal W closestto all V
@ Project X with W and then obtain MRP

@ Step 2: Obtain uncorrelated projections that maximize between-group
sums of squares and cross products (SSCP) relative to the total SSCP.

o Let T, W be (p.d.) total & between-group corrected SSCP.

o V=T 2w;/|T 2wj,j=1,2,... .k, Ww;,j=1,2,... kare,in
decreasing order, the k largest eigenvalues of T~'/2BT~"/2,

@ k < G — 1, chosen by scree plot/quality of display

@ G <4 needs 4 — G+ 1 more projections w/ null contribution

@ needs p.d. T, does not hold if p > min ng

@ MRP maximizes separation between groups (in projected space)
relative to total variability.
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500D Examples

RadViz2D, & — 102

Viz3D RadViz3D

RadViz2D, & = 102
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Datasets with Skewed Attributes

@ Consider ar.v. X with CDF Fx(x).
e Fx(X)~ U(0,1) = Y =& 1[Fx(X)] ~ N(0,1).

@ call the above (classical) Gaussianized Distributional Transform (CGDT)
@ marginal application of CGDT specifies distribution on X with desired
marginal and correlation structure.

@ CGDT standardizing transform, more stringent than usual affine
0-mean, unit-variance inducing transform

o CGDT matches all marginal quantiles to N(0,1)

o Apply to skewed datasets or with unclear marginals

@ Before applying MRP and RadViz3D
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Applications: Gamma Ray Bursts Dataset

RadViz2D

Viz3D RadViz3D
Groupse1-2e304e5

@ Heavily skewed attributes, so CGDT appropriate
@ Results indicate 5 overlapping clusters

@ some suggestion of 2, 3 super-types of GRBs
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Applications: Face Recognition

@ 112x92-images of 6/40 faces at 10 light angles/conditions.

@ (20x14) DWT2 (LL band) of wavelet-transformed images with 280
features (Jadhav & Holambe, 2009)
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Applications: Face Recognltlon

X3

o X4, .
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RadViz2D

Viz3D RadViz3D
@ marginals unclear: use CGDT

@ RadViz3D clarifies all 6 people the best
RadViz3D for High-dimensional Data
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Datasets with Discrete Attributes

@ For discrete-valued variable X, CDF Fx(X) ¢ U(0, 1) because of
discreteness.

o CGDT currently not applicable

1 ®

® O
&—O
0—=oO

@ Note that the CDF is only right continuous

@ Solution proposed by Rischendorf (2013) via the generalized
distributional transform

Dai, Zhu & Maitra RadViz3D for High-dimensional Data 25/34



Generalized Distributional Transform (GDT)

Definition

Let X be a real-valued RV with CDF Fx(-) and let V ~ U(0,1) be a RV
independent of X. The generalized distributional transform of X is

U= F(X, V) where

F(x,\) = P(X < x) + AP(X = x) = Fx(x—) + A[Fx(x) — Fx(x—)] is the
generalized CDF of X.

Theorem
Let U = F(X, V) be the generalized distributional transform of X. Then

U ~ Uniform(0, 1) and X = F)?1 (U)as.

where F~1(t) = inf{x € R : Fx(x) > t} is the generalized inverse, or
the quantile transform, of Fx(-).

@ Use F(X, V) in place of Fx(X), calculate GDT as before

e use of GDT on non-discriminating coordinate can spuriously bestow it
hyper-importance

@ suggest ANOVA test on each GDT-ed coordinate, control FDR
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lllustration: Simulated Binary Datasets
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Applications: Senate Voting Records

o ————— o ——

@ 108th US Congress (2005-06) had 542 (Y/N/NR) Senate votes

e 55 Republicans, 44 Democrats, 1 (D-caucus) Independent (VT)
(Banerjee et al, 2008)

@ combine N/NR to get dataset of binary attributes
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Applications: Senate Voting Records
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@ G =2soonly 1 MRP with postive eigenvalue

@ spring Xi pulls members of one party towards itself more

e X, X3, X4 pull senators from both parties with equally
(non-discriminating) force
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Applications: Handwritten Indic Scripts
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General of India)

@ Handwritten scripts from Bangla (east), Gujarati (west), Gurmukhi
(north), Kannada and Malayalam (southern states of Karnataka and
Kerala), Urdu (Persian script), with 116 mixed features (Obaidullah et al,

2017).
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Applications: Handwritten Indic Scripts

RadViz2D

Viz3D RadViz3D
Bangla e Gujarati ® Gurmukhi @ Kannada @ Malayalam e Urdu

@ Viz3D (lesser extent RadViz2D) separates Urdu, Kannada and
Guijarati, not the other 3 languages

@ RadViz3D best in classifying all the 6 scripts
e also points to difficulty of problem
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Applications: RNA Sequences

@ Gene expression levels, in FPKM, of RNA sequences from 13 human
organs.

e focus on 8 largest (in terms of the sample size) organs

@ esophagus (659), colon (339), thyroid (318), lung (313), breast (212),
stomach (159), liver (115) and prostate (106)

o p=20242 discrete features

@ some have many discrete values, essentially continuous

e dataset of mixed attributes.

@ Display for distinctiveness of samples from each organ
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Applications: RNA Sequences

Xs.
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Breast @ Colon @ Esophagus e Liver @ Lung @ Prostate ® Stomach = Thyrioid

@ RadViz2D, Viz3D poorer at separating organs
@ RadViz3D indicates clear separation between organs

e colon and stomach have some marginal overlap.
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Conclusions and Further Work

@ Visualization tool for HD datasets

e RadViz3D for more comprehensive display of grouped data

o MRP, GDT for discrete, mixed, skewed variates

e displays distinct groups more accurately

o Rpackage https://github.com/fanne-stat/radviz3d

@ manuscript https://arxiv.org/abs/1904.06366
@ Number of issues merit further attention

o MRP linear; non-linear projections better?
e extend for categorical (non-binary) attributes
o GDT/MRP with other tools for improved visualization
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